metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun-Long Fu,^a Zhi-Wei Xu,^a Jia-Lin Ren^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.028 wR factor = 0.081 Data-to-parameter ratio = 11.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[bis(ethane-1,2-diaminium) [ferrate(III)- μ -hydroxo- $\kappa^2 O$:O-di- μ sulfato- $\kappa^4 O$:O']] sulfate monohydrate]

The reaction of ferric sulfate with ethylenediamine in the presence of acid under hydrothermal conditions results in the title compound, $(C_2H_{10}N_2)_2[Fe^{III}(OH)(SO_4)_2](SO_4)\cdot H_2O$. The six-coordinate ferrate dianion participates in a μ_2 -hydroxo-di- μ_2 -sulfate-bridged chain. The component species interact with each other by an extensive network of $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds. The two independent Fe^{III} atoms lie on sites of $\overline{1}$ symmetry.

Received 29 June 2005 Accepted 30 June 2005

Online 6 July 2005

Comment

The structure reported here, (I), is a continuation of our studies on the reactions of ferric sulfate and diamines under hydrothermal conditions: 1,6-hexanediamine yielded $(C_6H_{18}N_2)$ [Fe(OH)(SO₄)₂]·H₂O (Fu *et al.*, 2005*a*) and diethylenetriamine yielded (C₄H₁₆N₃)[Fe(SO₄)₃]·H₂O (Fu *et al.*, 2005*b*). However, diethylenetriamine and triethylenetetraamine gave only the organic ammonium sulfates (Fu *et al.*, 2005*c,d*).

The iron-containing anion in (I) (Fig. 1) is a polyanionic $[Fe(OH)(SO_4)_2]_n$ chain, the Fe^{III} atoms of which are bridged by the hydroxo and sulfate groups in an all-*trans* octahedral environment. There are two independent Fe atoms, both of which lie on special positions of site symmetry $\overline{1}$. The formula unit features a free sulfate group; this is linked to the polyanionic chain (Fig. 2), the cations and non-coordinated water molecules, resulting in a three-dimensional hydrogen-bonded network (Table 2).

Experimental

Ferric sulfate nonahydrate (0.28 g, 0.5 mmol) was dissolved in a water-ethanol mixture (9 ml, 2:1 v/v). Concentrated sulfuric acid solution (0.16 ml, 3 mmol) was added, followed by ethylenediamine (0.18 ml, 3 mmol). The mixture was stirred briefly to form a homogeneous gel; the gel was transferred into a 15 ml Teflon-lined Parr

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

View of (I) showing 70% displacement ellipsoids (arbitrary spheres for the H atoms). The dashed lines indicate bonds to adjacent Fe atoms in the polymeric chain. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z.]

Figure 2 View of a fragment of the polyanionic $[Fe(OH)(SO_4)_2]$ chain in (I).

bomb which was then at heated 383 K for 48 h. The solid product consisted of yellow crystals of (I) that were isolated in about 80% yield (based on Fe).

Z = 2

 $D_x = 2.029 \text{ Mg m}^{-3}$

Cell parameters from 4504

Mo $K\alpha$ radiation

reflections

 $\theta = 2.3 - 28.4^{\circ}$ $\mu = 1.38 \text{ mm}^{-1}$

T = 295 (2) K

Needle, yellow

 $\begin{array}{l} R_{\rm int} = 0.023 \\ \theta_{\rm max} = 27.5^{\circ} \\ h = -9 \rightarrow 9 \end{array}$

 $k = -11 \rightarrow 11$

 $l = -16 \rightarrow 17$

 $0.25 \times 0.06 \times 0.04$ mm

3695 independent reflections

3324 reflections with $I > 2\sigma(I)$

Crystal data

 $\begin{array}{l} (C_{2}H_{10}N_{2})_{2}[Fe(OH)(SO_{4})_{2}]-\\ (SO_{4})\cdot H_{2}O\\ M_{r}=503.29\\ Triclinic, P\overline{1}\\ a=7.1352 (4) Å\\ b=8.7869 (5) Å\\ c=13.1860 (7) Å\\ \alpha=88.659 (1)^{\circ}\\ \beta=85.782 (1)^{\circ}\\ \gamma=88.145 (1)^{\circ}\\ \gamma=882.366 (8) Å^{3} \end{array}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.795$, $T_{max} = 0.947$ 9220 measured reflections

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_{\rm o}^2) + (0.0499P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.028 & w + 0.2749P] \\ wR(F^2) = 0.081 & where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ S = 1.04 & (\Delta/\sigma)_{\rm max} = 0.001 \\ 3695 \ reflections & \Delta\rho_{\rm max} = 0.43 \ e\ {\rm \AA}^{-3} \\ 330 \ parameters & \Delta\rho_{\rm min} = -0.32 \ e\ {\rm \AA}^{-3} \\ \mbox{All H-atom parameters refined} \\ \end{array}$

Table 1Selected bond lengths (Å).

Fe1-O1	2.094 (1)	Fe2-O2	2.044 (1)
Fe1-O5	1.983 (1)	Fe2-O6	1.998 (1)
Fe1-O9	1.951 (1)	Fe2-O9	1.962 (1)

Table 2			
Hydrogen-bond	geometry	(Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O9−H9o···O1 <i>w</i>	0.84 (1)	1.94 (1)	2.757 (2)	164 (2)
$O1W-H1w1\cdots O4^{i}$	0.84(1)	2.18(1)	2.988 (2)	163 (3)
$O1W-H1w2\cdots O7^{ii}$	0.84(1)	1.99 (1)	2.790 (2)	159 (3)
$N1 - H1n1 \cdots O12^{iii}$	0.85(1)	2.14 (2)	2.912 (3)	151 (3)
$N1-H1n2\cdots O8^{ii}$	0.85(1)	2.32 (3)	2.966 (3)	132 (3)
N1-H1n3···O7 ⁱⁱⁱ	0.86(1)	2.17 (2)	2.967 (3)	153 (3)
$N1-H1n2\cdotsO1w$	0.85(1)	2.30 (3)	2.923 (3)	130 (3)
$N2-H2n1\cdots O4^{iii}$	0.86 (1)	2.04 (1)	2.847 (3)	158 (3)
N2-H2n2···O13 ^{iv}	0.85(1)	2.05 (2)	2.840 (3)	155 (3)
$N2-H2n3\cdotsO10^{v}$	0.85 (1)	1.88 (1)	2.714 (3)	165 (3)
N3-H3n1···O11	0.85(1)	2.02 (1)	2.842 (3)	161 (3)
N3-H3n2···O2 ^{vi}	0.85(1)	2.07(1)	2.912 (2)	174 (3)
N3-H3n3···O1	0.85 (1)	2.12 (1)	2.964 (2)	176 (3)
N4-H4n1···O11 ^{vii}	0.86(1)	1.97 (1)	2.811 (3)	168 (3)
$N4-H4n2\cdots O12^{viii}$	0.86 (1)	1.96 (1)	2.807 (3)	169 (3)
$N4-H4n3\cdots O13^{ii}$	0.86(1)	1.99 (1)	2.834 (3)	165 (3)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 2, -y + 1, -z + 1; (v) x, y - 1, z + 1; (vi) x + 1, y, z; (vii) -x + 2, -y + 1, -z; (viii) -x + 1, -y + 1, -z.

H atoms were located in difference maps and refined with distance restraints [O-H = N-H = 0.85 (1) and C-H = 0.95 (1) Å]. The U_{iso} values were refined freely.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005a). Acta Cryst. E61, m596m597.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005b). Acta Cryst. E61, m593m595.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005c). Acta Cryst. E61, 0772-0773.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005d). Acta Cryst. E61, o774-o775.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.